Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO₂ Derived from Oxyfuel Combustion (Oxy – T – Fired) ## (NETL Cooperative Agreement No. DE-NT0005309) Department of Energy/National Energy Technology Laboratory (DOE/NETL) 2010 CO2 Capture Technology R&D Meeting, 13-17 September 2010 Pittsburgh, PA, USA **Kevin Fogash** Air Products and Chemicals, Inc. ## Who Is Air Products? - Global atmospheric, process and specialty gases, performance materials, equipment and services provider - Serving industrial, energy, technology and healthcare markets worldwide - Fortune 500 company - Known for our innovative culture and operational excellence - Safety leader in the chemical industry - Capture techniques - Based upon wide experience in ASU, HyCO, combustion applications, cryogenic separations, compression & CO₂ handling - Promising proprietary developments point to reductions in cost of CO₂ capture ## Agreement Period of Performance & Cost Share - Period of Performance: - 1 October 2008 30 September 2010 - Air Products - NETL Cost Share: - Overall Project Total: - \$ 251,000 (20%) - \$ 1,003,995 (80%) - \$ 1,254,995 - Project Participants: Air Products - Host Site: Alstom Power Power Plant Laboratories Boiler Simulation Facility in Windsor, CT. ## **Technology Fundamentals** - What is the technology? - Current status of technology - Design for the PDU (process development unit) - Results from PDU campaigns - Next Steps ## Oxyfuel CO₂ Purification - Oxyfuel combustion of coal produces a flue gas containing: - CO₂ + H₂O - Any inerts from air in leakage or oxygen impurities - Oxidation products and impurities from the fuel (SO_x , NO_x , HCl, Hg, etc.) - Purification requires: - Cooling to remove water - Compression to 30 bar - Integrated SOx/NOx/Hg removal - Low Temperature Purification - Low purity, bulk inerts removal - High purity, Oxygen removal - Compression to pipeline pressure ## NOx SO₂ Reactions in the CO₂ Compression System - We realized that SO₂, NOx and Hg can be removed in the CO₂ compression process, in the presence of water and oxygen. - SO₂ is converted to Sulfuric Acid, NO₂ converted to Nitric Acid: | $-$ NO + $\frac{1}{2}$ O ₂ | = | NO_2 | (1) Slow | |---------------------------------------|---|--------------------------------|----------| | - 2 NO ₂ | = | $N_2\bar{O_4}$ | (2) Fast | | $- 2 NO_{2}^{-} + H_{2}O$ | = | $H\overline{NO}_2 + HNO_3$ | (3) Slow | | -3 HNO2 | = | $HNO_{3} + 2 NO + H_{2}O$ | (4) Fast | | $- NO_2 + \overline{SO}_2$ | = | $NO + SO_3$ | (5) Fast | | $- SO_3 + H_2O$ | = | H ₂ SO ₄ | (6) Fast | - Rate increases with Pressure to the 3rd power - only feasible at elevated pressure - Little Nitric Acid is formed until all the SO₂ is converted - Pressure, reactor design and residence times, are important. ## Air Products' CO₂ Compression and Purification System: Removal of SO₂, NO_x and Hg ### Air Products' System: Inerts removal and compression to 110 bar ## SOx/NOx Removal – Key Features - Adiabatic compression to 15 bar: - No interstage water removal - All Water and SOx removed at one place - NO acts as a catalyst - NO is oxidized to NO₂ and then NO₂ oxidizes SO₂ to SO₃: The Lead Chamber Process - Hg will also be removed, reacting with the nitric acid that is formed - FGD and DeNOx systems are not required for emissions or CO₂ purity - SOx/NOx removed in compression system - Low NOx burners are not required for oxyfuel combustion **Path to from Lab** to Demo $160 \, kW_{th}$ oxy-coal rig $15\,MW_{th}$ oxy-coal combustion unit Renfrew, Scotland 30 MW_{th} oxy-coal pilot plant 50-250 MW_e oxy-coal **Demonstration** $0.3~\mathrm{MW_{th}}$ slip stream 1 MW_{th} slip stream **Imperial College** London London Batch DOOSAN 6 kW_{th} slip stream © Air Products and Chemicals, Inc. 2010. All Rights Reserved ## **Project objectives** To purify the CO₂ derived from oxy-coal combustion by utilizing the SOx / NOx reactions that will occur during CO₂ compression #### Phase 1 Design and Construction of Reactor System for Purification of CO₂ from Oxy-Coal Combustion - The Phase I objectives include the design, construction, and commissioning of a 15 bar reactor system for removal of SOx /NOx from actual oxy-coal derived, CO₂-rich flue gas. - The system will be designed to cool an oxy-coal combustion flue gas slip stream(~0.35 MW_{th} flow rate equivalent), compress from 1 bar to 15 bar and react within a 15 bar column the SOx/NOx present in the CO₂ rich flue gas. ## Project objectives (continued) #### Phase II Evaluate Robustness of Reactor Performance for Purification CO₂ from Oxy-Coal Combustion - The Phase II objectives include further evaluations of the reaction process using oxy-coal derived flue gas generated by the host site (Alstom). - Evaluate the performance of the reactor based on the reactor effluents for different reactor pressures as well as water recycle rates - Characterize the reactor effluents (both liquid and gaseous) to assess any change in reactor performance - Air Products will develop an engineering model to describe the 15 bar purification reactor performance. - Perform a sensitivity analysis using said model to elucidate those parameters most critical to performance ### Milestones / Schedule - Initiate Construction of Reactor System - Planned Date: Complete - Initiate Testing of Reactor System - Planned Date: Complete - Evaluate Performance of Reactor Based Flue Gas - Planned Date: Complete - Develop Engineering Model and Perform Sensitivity Analysis - Planned Date: September 30, 2010 ## **Current Process Flow Diagram** PDU (process development unit) DOE Project: Air Products' Sour Compression PDU Side View of PDU - 1st campaign Jan 2010 - 2nd campaign April-May 2010 **Acid Reactor (C102)** ### Results - For the overall process, total SO₂ removal was 20-100 % (based on gas compositions). - For the overall process, total NOx removal was 60-90 % (based on gas compositions). - The effects of variations in the SO₂/NOx feed ratio, column pressure, gas flowrate and liquid recirculation on the reactor performance were elucidated. Process performance was most sensitive to SO₂/NOx feed ratio, over the range of parameter values investigated. - SO₂ was removed from the flue gas through both sulfite and sulfate mechanisms. ## Comparison of NO and SO₂ conversions - Reproducing test conditions shows consistent results - Confirms process and measurement reproducibility ## Impact of column operating parameters on SOx and NOx conversion | ↑ in Operating Parameter | SO _x
Conversion | NO _x
Conversion | |---|-------------------------------|-------------------------------| | Column pressure | ↑ | ↑ | | Column gas flow-rate | \ | \ | | Column recirculation liquid flow-rate | 1 | ↑ | | Column fresh make-up water flow-rate | 1 | ↑ | | Column inlet SO _x /NO _x ratio | \ | <u> </u> | ## **Advantages** - FGD and DeNOx systems are not required for emissions or CO₂ purity - SOx/NOx removed in compression system - Low NOx burners are not required for oxyfuel combustion - Oxygen can be removed to produce EOR-grade CO₂ - No penalty if CO₂ is required as a liquid - Vent stream is clean, at pressure and rich in CO₂ (~25%) and O₂ (~20%) - Polymeric membrane unit selective for CO₂ and O₂ in vent stream will recycle CO₂ and O₂ rich permeate stream to boiler. - CO₂ Capture increase to >97% - ASU size/power reduced ~5% ## Challenges - Optimization of SOx, NOx, & Hg removal - Reaction kinetics / equilibrium - Fouling / impurities effects - Materials of construction - Byproduct streams H₂SO₄, HNO₃, Hg species,... - Burners must be demonstrated with flue gas recycle - Minimization of parasitic power for O₂ supply and CO₂ compression / purification PDUCPU Pilot Plant **Boiler OEMs** Reference Plants Design FEED Studies Path to from Lab to Demo $160 \, kW_{th}$ oxy-coal rig DOOSAN Batch $15\,MW_{th}$ oxy-coal combustion unit 30 MW_{th} oxy-coal pilot plant $0.3~\mathrm{MW_{th}}$ slip stream 50-250 MW_e oxy-coal **Demonstration** VATTENFALL Schwarze Pumpe, Germany **Imperial College** 6 kW_{th} slip stream Renfrew, Scotland Cylinder fed bench rig ## **Next Steps** - Complete final report for PDU / small scale testing of SOx/NOx removal - Move to pilot scale for CO₂ purification and compression - Scale up to Pilot: Underway - Demonstration on stream: 2015 - Commercialization: 2017-2020 **Acknowledgment:** "This material is based upon work supported by the Department of Energy's National Energy Technology Laboratory under Award Number DE-NT0005309." Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof." ## Thank you ## tell me more www.airproducts.com